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ABSTRACT 
We describe a tower of spaces whose inverse limit is a ~fiberwise completion" 
of a fibration E ~ B, and study the resulting spectral sequence converging to 
the homotopy groups of the space of lifts of a map X--, B. This is used to give 
a proof of the "generalized Sullivan conjecture". 

O. Introduction 

In this paper we construct a relative unstable mod p Adams spectral 
sequence which is adapted to studying the homotopy groups of the space of 
sections of a fibration E - * B .  We calculate the E2-term of the spectral 
sequence and then analyze the calculation in some detail in the special case in 
which B is the space BZ/p. This leads to a new proof of the generalized 
Sullivan conjecture, a proof which is closely related to the proof of Lannes [4] 
and to an unpublished proof by the second author but which is streamlined at a 
critical point by use of the relative spectral sequence. The way in which this 
spectral sequence is used depends heavily on ideas of Lannes. 

Let R be the field Fp of p elements. The mod p unstable Adams spectral 
sequence of [2] is obtained by working with a cosimplicial construction of the 
R-completion R® Xofa  space X. It is natural to expect that a relative version of 
this spectral sequence might be obtained from some sort of cosimplicial 
construction of thefibrewise R-completion of a fibration E --- B. Bousfield and 
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Kan do give a cosimplicial construction R~ E of the fibrewise R-completion 
but the resulting spectral sequence has an E2-term which cannot be described 
in terms of the homology groups of E and of B. We modify their approach and 
give a cosimplicial recipe for a slightly different space BR~ E which up to 
homotopy fits into a fibre square 

B R a E  ---, R~ E 

B ---, R~B.  

This recipe leads, for each space Y over B, to a spectral sequence which 
(1) has a homologically identifiable E2-term, and 
(2) converges to the homotopy of the space F(Y, BRAE) of maps from Yto 

BR~ E over B. 
Of course, one usually wants to know about F(Y, E) and not about 
F(Y, BR®E). We do not understand in general the properties of the natural 
map F(Y, E)--, F(Y, BRAE) but some information is available. For one thing 
the fibre lemma of [2] shows that under some circumstances, for instance if the 
fundamental group of B is a finite p-group, the space BRaE is weakly 
equivalent over B to R~E. Suppose now that 7t is a finite p-group, X is a 
simply connected space with a n-action, and E---B is the Borel construction 
En X~X---,Brt. The results of [3] then imply that the mapF(BTt, E)--- 
F(Bn, BR~ (E)) is a mod p homotopy isomorphism, that is, that the fibres are 
simple spaces with homotopy groups which are uniquely p- divisible. 

We would like to express our gratitude to A. K. Bousfield for his many letters 
to us describing unstable Adams spectral sequences, bicosimplicial spaces, 
the role of derivations, and convergence criteria. We also owe thanks to 
J.-P. Meyer for pointing out that an invalid proof of Proposition 7.1 was 
contained in a previous version of this paper. 

Notation and Terminology. Throughout the paper p will be a fixed prime 
and R will denote the field Fp. All homology and cohomology is taken with 
coefficients in R. We will work in the category of simplicial sets and adopt the 
convention that "space" means "simplicial set". Cosimplicial objects will be 
denoted A', B ' , . . .  and their augmentations if any by A - t __, A" or X---- A°. The 
symbol c'X will stand for the constant cosimplicial object with (c'X) s = X for 

all s >_- 0 and all coface operators d' and codegeneracy operators s i given by 
identity maps. An augmentation X - , A "  is equivalent to a cosimplicial 
map c'X ~ A'. 
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Our basic reference is the book of  Bousfield and Kan [2]. Many of the ideas 
there are also expounded in [5]. 

1. The construction of BR~oE 

The purpose of this section is to give the construction of BRooE. This 
depends on two standard definitions. 

DEFINITION 1.1. Let C be a category and T a triple [2] in C with struc- 
ture maps r/: 1 ~ T and g : T 2--- T. Given an object X of C, the canonical 

resolution of Xwith respect to Tis  the augmented cosimplicial object X ~ T ° X  

defined by: 

( T ' X )  ~ = T~+IX, 

d i = Tirl(T ̀ - iX )  : (T.X)S-1 ~ (T.X)S,  

s i = Tilt(T ~-iX) : (ToX)~ +1 ~ (T.X)S,  

w h e r e i - - 0 , . . . , s .  

The augmentation is d o=  r l : X - - , ( T ' X )  °. 

Let A ° be the cosimplicial space with N = A[s], the standard s-simplex, and 
with d ~ and s ~ the standard coface and codegeneracy maps. Given cosimplicial 
spaces A" and B', let hom(A', B') be the cosimplicial mapping space [2], 
in which the n-simplices hom(A',B')~ are the cosimplicial morphisms 
A[n] × A ' - - , B ' .  Here (A[n] X A ' y - - A [ n ]  XA ~, d i =  1 X d i, and s t - -  1 × s  i. 
The face operators di :hom(A' ,  B')~ ~ h o m ( A ' ,  B')~-I and the degeneracy 
operators si : hom(A', B')~ ~ hom(A', B')n +l are given by dr( f )  = f ( d  ~ X 1) 
and s i ( f )  = f ( s  i X 1). 

DEFINITION 1.2 The total complex tot Y" of a cosimplicial space Y" is the 
mapping space hom(A', Y') 

It is not difficult to check that tot c 'X  = X .  Hence, if X--- Y" is an augmented 
cosimplicial space, applying tot to c 'X-- ,  ]I" gives a map X ~ tot Y'. 

For any space X, Bousfield and Kan construct a space R X b y  letting (RX)n be 
the set of  finite formal sums Z r[x] where r ~ R  and x E Xn. This gives rise to a 
triple in which the structure maps tlx: X---  R X a n d # x :  R2X  ~ RXare given by 
the formulas ~lx(x) --- Ix] and #x(7~ s[Z r[x]]) = Z sr[x]. The R-completion 
R® X is then defined to be tot R ' X .  
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RE~AgK. Bousfield and Kan actually work with a slightly different triple 
[2, I, §2], which we will denote ~ ;  our RXis what they denote R ®X.  We will 
show in Proposition 6.6 that tot/~'X is homotopy equivalent to tot R'X. 

Let B be a fixed space. Given a space E over B with map 0 : E -~ B, let BR (E) 
be the product B × RE and regard BR(E) as a space over B by projecting on 
the first factor. There are maps ~/: E - , B R ( E )  and /~:(BR)2(E)---BR(E) 

given by the formulas r /=  (~, ~/E) : E ~ B  × RE and :t = 1 × (/~ER(n2)): 
B X R ( B X R E ) ~ B X R E  where n 2 : B X R E - - - R E  is projection on the 
second factor. These maps provide the functor BR with the structure of 
a triple. 

DEFINITION 1.3. Let E be a space over B. The relative R-completion 
BR®(E) of E is the space tot BR'(E). 

Since there is a map BR'(E)--,c'B, BR~(E) is a space over B. The evident 
augmentation E --* BR'E induces a map E --, BR~(E) which is a map over B. 

THEOREM 1.4. Let B be a fibrant space (i.e. Kan complex) and E ~ B  
a ftbration. Then up to homotopy the space BR~(E) fits into a homotopy 

fibre square 

BR~(E) --, RooE 

B --* R®B 

This will be proved in Section 7. 

2. Derived functor of  derivations 

This section discusses some algebra which is needed for the description of 
the E2-term of the relative unstable Adams spectral sequence. 

Let CA denote the category of graded commutative unstable coalgebras with 
unit over the mod p Steenrod algebra [5]. I fB  is an object in CA, CA/B will 
stand for the category of objects of CA over B. 

Let S t denote the mod p homology of the t-sphere considered as an object of 
CA, and let Xbe  an object in CA/B for some B. The projection S t ® X ~ X  

makes S t ® Xinto an object in CA/B in such a way that this projection is a map 
in the category. Similarly, choosing augmentations Fp - ,  S t (these are unique 
unless t -~ 0) gives maps X-~ S t ® X. 

DEFINITION 2.1. Let B be an object of CA and ~u: X--* E a map in CA/B. A 
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map ~" S t ® X ~ E in CA/B is called a derivation of  degree t with respect to ¥ i f  

the diagram 

X -----, E 

S t ® X  

commutes. The set of all derivations of degree t with respect to ~/is denoted 
Dertc~B(X, E)~,. 

The set De~c~n(X, E)~, is just Homc~n(X, E) and, for t > 1, De r~s (X ,  E) w 
is an Fp vector space of what would usually be called coalgebra derivations over 
the Steenrod algebra. 

Let Fp be the category of non-negatively graded Fp modules. The forgetful 
functor J :  CA ~ Fp has a right adjoint G : Fp --* CA. We also write G for the 
resulting triple G - - G  J: C A E C A  with triple structure ~lE:E ~ GE and 
/~E : G 2E "" GE. Now define a triple B - G : CA/B ~ CA/B as follows: i fE  is in 
CA/B with map0:E- -*B,  let ( B -  G)(E)f f iB®G(E),  ~1 ffi (O®r/E)A:E~ 
E ® E - ~ B ® G ( E ) ,  and /~ =(I®#E)(I®G(7~2)):B®G(B®G(E))-*  
B ® G(G(E))---, B ® G(E) where n2 : B ® G(E)--, G(E) is the projection given 
by the unit B --* Fp. 

DEFINITION 2.2. Let ~/: X - * E  be a map in CA/B, so that the augmen- 
tation E ~ ( B  - G)'(E) gives maps X ~ ( B  - G)"+~(E), also denoted ¥. The 
right derivedfunctors ofDertc~n(X, E)~, are defined, for all s >_- 0 if t > 1 and for 
s = 0 if t -- 0, by Exer t (X ,  E) w = 7~(Dertc~B(X, (B - G)'(E))~,). 

REMARK. Here we have used the following notation: if A" is a cosimplicial 
abelian group, ~tSA" is the cohomology group HS(A ", d) where d ffi Z( - 1)idi; ff 
A" is a cosimplicial set, n°A" is the equalizer o f d  ° and d ~ : A ° ~ A  ~. 

REMARK 2.3. It is easy to see that Ext~B(X, E)~, is naturally isomorphic 
to Der~c~n(X, E)v,. In particular, E x t ~ ( X ,  E),, is essentially independent of ¥ 
and is isomorphic to the set HomcAm(X, E). 

The preceding considerations dualize to algebras as follows. Let A be the 
category of unstable algebras over the rood p Steenrod algebra. If B* is an 
object in A, let A \B*  be the category of objects under B*, that is, of objects E* 
in A together with maps 0 : B* --- E*. The forgetful functor J*:  A--* Fp has a 
left adjoint G* and we also write G* for the cotriple G* -- G'J*. There is a 
cotriple ( B * -  G*) on A\B*  defined by ( B * -  G*)(E*) -- B* O G*(E*). If 
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gt : E* ---} X* is a map in AkB*,  we define DerAxn.(E*,X*) v, and 
Ext~[n.(E*, X*)~, by a procedure dual to the one for coalgebras above. Then, if 
X, E,  B are finite type objects in CA with dual objects AT*, E*, B ' i n  A, we have 

s t  , Ext~s (X ,  E)~ Extxxs.(E , X*)~,.. 

If  e: B*--*Fp is an augmented object in A and E* is an object of  A \ B * ,  let 
E~, = Fp ®no E* be the sum of the "components" of E* which cover the com- 
ponen't B* = Fp ®s0 B* of B* corresponding to e. If  ~ : E* ~ Fp is an augmen- 
tation extending e, let ~ : E~ --- Fp be the induced quotient augmentation. 

LEMMA 2.4. I f  B* is an object of A augmented by e : B* --, Fp, and E* 
is an object of A \ B *  with an augmentation ~o : E*--,Fp extending e, then 
Ext~[s.(E*, Fp)¢ is naturally isomorphic to Ext~[~(E*, Fp)¢. 

The proof  of this is essentially the same as the proof  [4] in the special case of  

A = A \ F  r 
Let rt = Z /pZ  and H* = H*(Brt, Fp). Recall that Lannes [4] has given a 

functor T: A---A which is left adjoint to the functor given by tensor product 
with H*: 

HomA(B*, H* @ C*) = HomA(TB*, C*). 

LEMMA 2.5 (Lannes [4]). The functor T has the following properties. 
(a) T preserves free objects. 
(b) T preserves tensor products: T(A* ~ B*) = TA* ~ TB*. 
(c) T is exact, in particular, T preserves simplicial resolutions. 
(d) I f  A* is finite dimensional, the natural map A*--, H* @A* induces via 

adjointness an isomorphism TA*-,  A*. 

These properties lead easily to a proof  of  the following lemma. 

LEMMA 2.6. The functor T preserves derivations and derived functors of  
derivations, that is, i f  B* is an object of A, E* and X* are objects of  A \ B*, and 
¢/: E* ~ H* ® X* is a map of  A \ B*, then there are natural isomorphisms 

s t  , , Extx\s.(E , H ~ X*)~, "~ s t , -- Extx\rs,( TE , X* )~. 

where ~#: T E * ~ X *  is the morphism corresponding by adjointness to 
~,: E* ~ H *  ~ X * .  
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3. The relative mod p unstable Adams spectral sequence 

In this section we describe the spectral sequence which is the subject of this 
paper, compute the E2 term, and use the computat ion to give a proof  of the 
generalized Sullivan conjecture. 

Fix a space B. For any two spaces Y and E over B, let F(Y, E) denote the 
space of maps over B from Yto E.  The spaces F(Y, BR ~ (E)) for n >_ 0 combine 
to form a cosimplicial space, denoted F(Y, BR°(E)), which is augmented by 
F(Y, E). It is easy to see that tot F(Y, BR'(E)) is isomorphic to F(Y, BR~(E)). 

We will need one technical observation. 

LEMMA 3.1. For any two spaces Y and E over B, F(Y, BR°(E)) is a fibrant 
termwise simple cosimplicial space. 

REMARK. The notion offibrant cosimplicial space is discussed in [2] and in 
Section 4. A cosimplicial space X" is termwise simple if each X ~ is a simple 
space (i.e., if each component  of X n has an abelian fundamental  group which 
acts trivially on the component 's  higher homotopy groups). 

PROOF OF 3.1. For any n > O, BR"(E) is an abelian group object over B. It 
is straightforward to deduce that F(Y, BR°(E)) is a grouplike cosimplicial 
space in the sense of [2]. The conclusion follows easily. 

Specifying a particular map ~/: Y ~ E  over B provides compatible base- 
points for F(Y, E), F(Y, BRn(E)) and F(Y, BRoo(E)). We will denote the 
resulting pointed spaces by, for instance, F(Y, E,  ~,). 

DEFINITION 3.2. Let ~/: Y ~ E be a map of  spaces over B. The relative 
unstable mod p Adams spectral sequence E~:(Y, E, ~) is the homotopy spec- 
tral sequence in the sense of [1] of  the pointed fibrant cosimplicial space 
F(Y, BR'(E), ~,). 

REMARK. The terms ESr't(Y, E, ~u) are defined for t _>- s > 0 and in certain 
other cases; in particular, in view of Lemma 3.1 and [1, 2.5], E~ ,t is defined for 

(s, t ) =  (0, 0) or for s > 0 and t > 1. There are differentials d,:E:,'--, 
E~ + r,t + r- ,  and the abutment of  the spectral sequence is rtt_,F(Y, BRoo(E)). A 
great deal of  information about the convergence of  this spectral sequence 

appears in [ 1 ]. 

LEMMA 3.3. In the situation o f  Definition 3.2 there are natural isomor- 
phisms 
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E~'t(Y, E, ¥) ~-- Ext~m,n(H. Y, H.E)xoW 

for (s, t) = (0, 0) or s >-_ 0 and t >-_ I. 

PROOF. Let I~ t denote the topological t-sphere. A map I~ t ---- F(Y, E) has an 

associated map I~ t X Y ~ E; applying the homology functor to this associated 

map produces a morphism from r~tF(Y, E, ¥) to Der'cAm,B(H.Y, H,E)tt, v 
which is an isomorphism when E ~ BR(E'). Since the topological triple BR 
and the algebraic triple H.(B)- G are related by a natural isomorphism 
0: H.(BR(E))---. (H.B - G)(H,E) which respects the triple structures, one 
concludes that there are natural isomorphisms 

ntF(Y, BRS(E), g/)--* DertcA/H.s(H, Y, (H.(B) - G)SH,E)H.~,. 

The lemma now follows from the definitions of Section 2 and from the general 

fact [l, 2.5] that for a pointed, fibrant, termwise simple cosimplicial space 
()Y, x), E~,I(X ", x) is isomorphic to nsn,(X ', x). 

Given Lemma 3.1, the following is a special case of[l, 6.3]. 

LEMMA 3.4. Let Y be a space over B and q~ : E l ""~ E 2 a map between two 

spaces over B. Suppose that for each q/ in Homc~..8(H. Y, H.EI), H. qb induces 
isomorphisms 

Ext~m.a(H, Y, H ,  El)v "~ Ext~m.B(H, Y, H,E2)(n.~)w 

for s > 0 and t > 1. Then ~ induces a homotopy equivalence 

r(B, BR•(E,)) ---. F(B, BR.(E2)). 

R~MARK. By Remark 2.3 the hypothesis of Lemma 3.4 includes the 
assumption that H.¢ induces an isomorphism HorncAm, n(H.Y, H,E~) ~- 
Horncun.s(H, Y, H.E2). 

Now we are ready to work on the generalized Sullivan conjecture. In what 
follows we will tacitly replace CW-complexes by their singular complexes 

whenever it is necessary to apply functors like Re, BR~, etc. 

PROr'OSmON 3.5 (Generalized Sullivan conjecture). Let n be Z/p, X a 

finite CW-complex with a cellular n-action, A n' the flxed-point set in X of the 

action of ~, and E.(X)= Ex Xx X---. Bzt, the Borel construction on X. Then 

there is a natural homotopy equivalence 

R® (x')--- I'(B~, Ex(R~ X)). 
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REMARK. The space I'(BTr, E~(R~X)) is just the space of sections of the 
f ibrat ion E,(R~X)-~Btt.  This space of sections is sometimes called the 
homotopyfixed-point set of the action of 7r on R®X. 

For the remainder of this section, H* will denote H*(BTr). 

LEMMA 3.6 (Lannes [4]). 

product 
The algebra T(H*) is naturally isomorphic to the 

11 H*. 
eEhom(x,x) 

Under this isomorphism, the identity map 1 : H* ~ H* corresponds via adjoint- 

ness to the unique algebra homomorphism from the product to Fp which factors 
through projection onto the ~o = 1 component. More generally, let ~ and X be as 
in (3.5) and let E denote Ex(X). Then T(H*E) is naturally isomorphic to the 
product 

(here (o runs through the non-zero maps 7~ ~ 7~). Under this isomorphism the 
map Tq/* : TH* ~ TH*E induced by the projection map ¥: E --" B~ corresponds 
via adjointness to the map between the products given by the natural inclusion 

H* --, H* ® H*X ~ on the ~ ~ 0 components and to ¥*: H* --, H*E on the q~ -- 0 
component. 

In the following statement we will use the notation of Lemma 2.5. 

LEMMA 3.7. Let ~ and X be as in (3.5), and let e : T(H*) ~ F o be the map 
which corresponds by adjointness to the identity map 1 : H* ~ H*. Then the 
map Ex(X~)~E~(X) induces an isomorphism 

( TH*(E~(X)))~ --~ (TH*(E~(X x)))e. 

PROOF. This is an immediate consequence of (3.6). 

PROOF OF 3.5. Let B denote BTc, so that E~(X) and Ex(X ~) are spaces 
over B. Theorem 1.4 and the fibre lemma of [2] imply that E~(R®X)~-- 
BR~(Ex(X)) and that there is a similar equivalence with X replaced by X ~. In 
view of the fact that X ~ is finite-dimensional, the Sullivan conjecture (as 
proven in [5]) states that F(B, E~(R®(X~))) is equivalent to R~(X~). Hence to 
prove (3.5) it is enough to show that the natural map ~ : E , ( X ~ ) ~ E , ( X )  
induces a homotopy equivalence F(B, BR®(Ex(X~)))---F(B, BR®(E,(X))). 
Let U* denote H*(E~(XX)) and let V* denote H*(E~(X)). By the eohomo- 



Vol. 66, 1989 FIBREWlSE COMPLETION 169 

logical version of  (3.4), the desired result will follow if we can show that 

for each ~,: U * ~ H *  in A \ H *  the mapH*(~)  induces isomorphisms 
s,t ~ Ext~[m(U* ,H*)~Ex tAxn . (V  , H  )~,n*~). By Lemmas 2.5 and 2.6, this is 

equivalent to showing that for each m a p p :  T ( U * ) ~ F ,  in A \ T ( H * )  the 

map TH*(~) induces isomorphisms 

Ext~[r~m)~( T( U*)~, Fv) p ~ Ext~(r(m),(T(V*)~, Fp)prmt,), 

where e:T(H*)-- ,Fp is the map which corresponds via adjointness to 

1 : H* ~ H*. The proof  is completed by appealing to Lemma 3.7, which in fact 

asserts that T(U*), ~-- T(V*),. 

4. Fibrations of cosimplicial spaces 

The next three sections are devoted to technical material which is needed for 
the proof of  Theorem 1.4 in Section 7. 

Let X" be a cosimplicial space. 

D~FINITION 4.1 [2, X, 4.5]. The matching space M"X" for n > 0  is the 

subset of  the n + 1 fold product X n X . . .  X X n consisting of  those 
( x ° , . . . ,  x ") such that six j = s J-Ix ~ whenever 0 < i < j  < n. 

By convention, M -  ~X" is a one-point space ,. For n > - 1 there are natural 
maps 

(,)n : X n + l __, M~X • 

given by x ~ ( s ° x , . . . ,  s~x) i fn  > 0. 

DEFINrrION 4.2. A map f :  X'---11" is called a fibration if, for each 
n > - 1, the natural map 

(**)~ : X ~ + l ~  y~+l × u . r M , X  • 

is a fibration. A cosimplicial space X" is calledfibrant ifX'--- c'(*) is a fibration, 

equivalently, if the maps ( .) ,  are fibrations for all n > - 1. 

REMARK. The definitions of  fibration and of  fibrant object do not involve 

the coface operators. 

It is easy to see that pullbacks of  fibrations are fibrations; hence fibres of  

fibrations are fibrant and products of  fibrant cosimplicial spaces are fibrant. 

PROPOSITION 4.3 [2]. I f  B" is a pointed cosimplicial space and E'--.  B" is a 
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/ibration with fibre F' ,  then tot E ' -~  tot B ° is a fibration with fibre tot F'.  In 
particular, i f  X" is fibrant then tot X" is a fibrant space (i.e., a Kan complex). 

We now list some examples. 

(1) I fB  is a fibrant space, then the constant cosimplicial space c°B is fibrant. 

The maps (*)n are B --- • if n = - 1 and isomorphisms if n ->_ 0. 

(2) Any isomorphism X ~ ~ Y" is a fibration. 

(3) If  I1" is fibrant, then the projection X" X Y'--" X" is a fibration. 

(4) A cosimplicial space X" is called grouplike if, for all n > 0, (X') n is a 

simplicial group and the coface and codegeneracy operators except 

possibly for d o are all homomorphisms. Bousfield and Kan show that 

grouplike objects are fibrant or more generally that any surjective 

homomorphism of grouplike objects is a fibration. (The canonical 

resolution R ' Y  of a space Y is grouplike.) 

(5) Let p : E --- B be a space over B with E and B fibrant. Consider the triple 

(B X - )(E) = B X E where B × E is regarded as a space over B by pro- 

jecting on the first factors and where the triple structure r/(E) : E ~ B × E 

and #(E)  : B × B X E - ~ B  X E is given by ~/(E)= (p,  l) and # ( E ) =  

projection on the first and third factors. The canonical resolution 

E - - ( B  × -  )'(E) is called the Rector complex. The natural map 

(B X - ) ' (E) - , c 'B  is a fibration: the map (**)~ is B X E -~B i fn  = - l, 

and an isomorphism if n > 0. 

(6) Let p : E --- B be a space over B and consider the resolution E --* BR'(E) 
introduced in Section 1. We claim that q : BR°(E) --, c°B is a fibration. 

Pick a basepoint in B and let F" be the fibre of  q. If  we forget the coface 

operators, then BR°(E) -~ c'B is the projection c'B >( F ° ~ c°B. Since F"  

is grouplike, F ° is fibrant. Hence, BR'(E)-~ c'B is a fibration. In particu- 

lar, i f B  is fibrant, then so is BR°(E). 

D~.FINmON 4.4 [2]. A map f :  X'--* Y" is a weak equivalence i f f  n : X ~ --- Y~ 

is a weak equivalence for all n >_- 0. 

PROPOSITION 4.5 [2]. I f  f :  X"-* Y" is a weak equivalence with X" and Y" 

fibrant, then tot f :  tot X ' - - t o t  Y" is a homotopy equivalence. 

In light of  the fact that the notion of  a homotopy fibre square and the no- 

tion of  the total complex of  a fibrant cosimplicial space can both be inter- 

preted in terms of  homotopy inverse limits [2, XI, 4.1(iv); XI, 4.4], the 
following is a consequence of  the homotopy inverse limit interchange principle 

[2, XI, 4.3]. 
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PROPOSITION 4.6. Suppose that 

A" , B "  

1 
C" , D "  

is a square of  fibrant cosimplicial spaces such that for each n > 0 the induced 

square of  spaces 

A n  ) B n 

1 1 
C ~ , D n 

is a homotopy fibre sqaure. Then the square 

tot A" , tot B" 

tot  C" , tot  D" 

is a homotopy fibre square. 

5. Fibrations of bicosimplicial spaces 

If  A'" is a bicosimplicial object, denote the horizontal operators by 
d ~ : A n - l , m - - * h  n,m a n d  s ~ : h n + l ' m " * A  n'm and the vertical operators by 
div : A n'm - I --* A n,m and Siv : A n'm + l --* A n'm . 

I f  X" and Y" are two cosimplicial spaces, the external product X ' X X "  is 
defined to be the bicosimplicial space with (X'X y.),,m = X . × ym and d~ = 
d ' x  1,sh = s ' X  1 xd ' , £ f f i  1 xs ' .  

IRA'" and B'" are two bieosimplicial spaces, the bicosimplicial mapping space 
hom(A", B")  is defined to be the space in which the n-simpliees are bicosim- 
plicial maps A n X A °'--- B'" and in which the face and degeneracy operators are 

given by the formulas di(f)ff i  f (d  i X 1) and s~(f)--  f(s  ~ X 1). 
The following lemma is straightforward. 

LEMMA 5.1. I f  X" and Y" are cosimplicial spaces and C'" is a bicosimplicial 
space, then hom(X'X l ~, C") = horn(X*, hom(l~,  C")), where hom(Y', C")n is 
the cosimplicial space with hom(/~,  C") n -- hom(Y', Cn'). 
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For any bicosimplicial space A", define tot A'" to be the space 
hom(A'>~A', A"). Also, define horizontal and vertical tot functors by letting 
tOthA'" be the cosimplicial space with (tothA") m ----totA "m and tOtvA'" the 
cosimplicial space with (totvA") n - - to tA n'. Lemma 5.1 has the following 

corollary. 

COROLLARY 5.2. If A'" iS a bicosimplicial space, then there are natural 

isomorphisms tot A'" --~ tot toth A'" --~ tot totvA". 

REMARK. One also has tot A'" -- tot (diag A") where diag A'" is the cosim- 
plicial space with (diagA") n --A n~ and with coface and codegeneracy opera- 

tors, d' = dih d~ = d~ d~ , s' = Sih S~ = s~ sih . 

IfA'" is a bicosimplicial space, we define horizontal and vertical coisimpli- 
cial matching spaces by (MgA")  m = M M  "m and (MmA")" = MmA ~'. 

DEFINITION 5.3. A map g: A " - - B ' "  ofbicosimplicial spaces is a/ibration 

if  A~+'"- ,B~+~"×utB. .MgA'"  is a fibration of cosimplicial spaces for all 
n > - l .  

REMARK. The above definition is due to Bousfield. He points out that 
this notion of fibration extends to a closed model category structure on the 
category of bicosimplicial spaces in which a map g : A " - - B ' "  is a weak 
equivalence if and only if g~m:Anm "" B "m is a homotopy equivalence for all 
n, m > 0. In addition, he observes the surprising fact that the condition of 
(5.3) is equivalent to the condition that A"m+~- 'B  ''m+~ ×~.B..MmA "" be a 

fibration for all n > - 1. 

As before, A'" is calledfibrant ifA'" ~ c"(,) is a fibration, where c"(,)  is the 
bicosimplicial space which is a constant point. 

The functors tOth and tot~ preserve matching spaces, that is, 

Mm(toth A") ~ tot(MmA "') 

and there is a similar formula for tot~. Furthermore, since tot preserves fibre 

products, the following lemma is a consequence of (4.3). 

LEMMA 5.4. I f  g : A "  --" B'" is a f~rat ion , then toh g, tot~ g, and tot  g are all 

flbrations. In particular, irA'" is frbrant , then toh A "', tote A", and tot A "  are all 

fibrant. 

This lemma and (4.5) imply: 

PROPOSmON 5.5. I f  g : A'" ~ B'" is a map ofbicosimplicial spaces with A'" 
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and B" fibrant and if  either, toth g or tot* g is a weak equivalence, then tot  g is a 
homotopy equivalence. 

A bicosimplicial space A'" can have either a vertical augmentation X'--,A °" 
or a horizontal augmentation X'--,A "°. The above proposit ion specializes to 

COROLLARY 5.6. Let X ' - ,A '"  be a vertical (resp. horizontal) augmen- 
tation with X" and A" fibrant and assume that X ' - ,  toth A'" (resp. X'--- tot.  A")  

is a weak equivalence of  cosimplicial spaces. Then tot X" ~ tot A'" is a homo- 
topy equivalence. 

The cosimplicial examples of Section 4 have analogues for bicosimplicial 
spaces. In particular, puUbacks of fibrations are fibrations, if B is a fibrant 
space then the constant bicosimplicial space c"B is fibrant, isomorphisms are 
fibrations, and ifB'" is fibrant then the projection A'" × B"---A'" is a fibration. 

DEFINITION 5.7. A bicosimplicial space A'" is grouplike i f  each fixed row 

A "m and each fixed column A n" is a grouplike cosimplicial space. 

PROPOSITION 5.8. A surjective homomorphism A"---,B'" of grouplike 
bicosimplicial spaces is a fibration. In particular, a grouplike bicosimplicial 
space is fibrant. 

PROOF. As in [2, p. 276], A n + ~'--- B n + t" XM;B" MRA'" is a surjective homo- 

morphism of  grouplike cosimplicial space, therefore, a fibration. 

6. Contractions 

Let X" be a cosimplicial object augmented by d o. X -  ~ ~ X °. 

DEFINITION 6.1. The augmented cosimplicial object X - t - - X "  is said to 

admit  a left contraction i f  for n >_- - 1 there are maps s -  1 . X n + 1 ~ X n which 

satisfy the evident extensions o f  the usual cosimplicial identities, that  is: 

s- Id  j-- 1 i f j  = 0, 

= d j -  ~s- ~ i f j  > 0 

s-~sJ=sJ-ls -l i f j >  - I. 

The augmented cosimplicial object is said to admit  a right contraction i f  for 

n > - 1 there are maps s n + t : X n + t __, X n which satisfy corresponding exten- 

sions o f  the cosimplicial identities. 
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LEMMA 6.2. I f  X - '  --, ,V is an augmented cosimplicial space which admits 

a contraction then the natural map d" X -  ' --- tot X" is a homotopy equivalence. 

SKETCH OF PROOF. A left contraction, say, gives a map S : X  ~--- c'X-I 

defned  by S" = s -  1 . . .  s - ,  : X . _., X -  1. If  s = tot S :  tot X'--- X -  1, it is easy to 

see that the composite sd: X - ,  ~ X -  1 is the identity. The proof is completed 

by showing that the contraction provides an explicit homotopy from the 

composite ds to the identity map of tot X'. If  X is a fibrant space and X" is a 

fibrant cosimplicial space, it is also possible to derive this lemma from the fact 

that the existence of  a contraction implies that the homotopy spectral sequence 

of  X" collapses, cf. [2, II, 2.7]. 

There are a few standard examples of  contractions. Let T be a triple and 

X--,  T ' X  the canonical resolution. 

(1) A left contraction for TX--" T(T°X) is defined for n > - 1 by s - '  = 
/ / (Tn +Ix )  : T(Tn+2x)  ---. T(T"+IX). 

(2) A right contraction for TX--* T'(TX) is defined for n > - 1 by s ~+1 = 
T" + '#(X) • T" + 2(TX)-- T ~ + t(TX). 

(3) Let E be a space over B with E and B fibrant. The Rector complex 

E --- ( B  × - ) ' ( E )  of  example 5 in Section 4 admits a left contraction: 

define it for n > - 1 by letting 

s-I  : (B X --)"+2(E)~(B X --)"+I(E) 

be projection on the last n + 2 factors. 

PROPOSITION 6.3. Let T be a triple on the category o f  spaces and 
M a functor from spaces to spaces. Suppose that X is a space with the pro- 
perty that the map q o M:  M(X)--,  TM(X) has a left inverse. Then the map 
M X  ~ tot T'(MX) is a homotopy equivalence. 

PROFOSmON 6.4. Let T and M be as in Proposition 6.3, and suppose that 

for any space X the map M(~I) " M(X)--,  MT(X)  has a left inverse which is 

natural in X. Then for any space X the map MX-- ,  tot(MT'X) is a homotopy 

equivalence. 

PROOF OF 6.3 A N D  6 . 4 .  In the case of  6.3 the assumptions imply that the 

map MX-- ,  tot T'(MX) is a retract of  the map TM(X)---, tot I~TM(X). The 

desired conclusion follows from example 1 above, Lemma 6.2, and the fact 

that any retract of  a homotopy equivalence is also a homotopy equivalence. A 

similar argument works in the case of  6.4. 
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PROPOSITION 6.5. Let S and T be two triples on the category o f  spaces and 
a : S -" T a natural transformation of  triples. Suppose that for any space X 

(1) the map ~ls : T ( X ) ~  ST(X) has a left inverse, 
(2) the map S(qT) : S(X)--,ST(X) has a left inverse which is natural 

in X, and 
(3) the objects S 'X and T 'X  are grouplike cosimplicial spaces. 

Then for any X the map a® : S®X ~ T®X is a homotopy equivalence. 

PROOF. Consider the bicosimplicial spaces S'T'(X) and T'T'(X)  with, 
e.g., S'T'(X) mn ffi S m + ~T n + I(X). There is a commutative diagram 

s'(x) 

S'T'(X) 
Or** 

T'(X) 

g 

T'T'(X) 

in which a" and a'" are induced by a and f a n d  g are the evident horizontal 
augmentations. There are three things to observe about this diagram. 

(1) The map to t ( f ) : to tS ' (X)-~tot 'S '~(X)  is a homotopy equivalence. 
Indeed, assumption (2) implies that for any m > 1 the map Stuff/r): 
SIn(X)-* SmT(X) has a left inverse which is natural in X. It follows from 
Proposition 6.4 that the map S'(X) - ,  tot~ S'T'(X) induced byfis a weak 
equivalence of cosimplicial spaces and then from assumption (3), Pro- 
position 5.8, and Proposition 5.6 that tot(f)  is a homotopy equivalence. 

(2) The map tot(g): tot T'(X)-~tot T'T'(X) is a homotopy equivalence. 
This is proved exactly as above. 

(3) The map tot(a"): tot  S'T'(X) -* tot T'T'(X)  is a homotopy equiva- 
lence. Assumption (1) implies that for any n > 1 the map T~Q/s): 
T~X--- S(T~X) has a left inverse and it is evident that for any n _-> 1 the 
map T~Q/T) : T~X ~ T(T~X) has a left inverse. It follows from Proposi- 
tion 6.3 that the map T'(X)-~toth S'T'(X) is a weak equivalence of 
cosimplicial spaces, and then from assumption (3), Proposition 5.8, and 
Proposition 5.6 that tot(a") is a homotopy equivalence. 

These facts together immediately imply that the map a~o ~tot(a ')  is a 
homotopy equivalence. 

Let/~ be the triple of[2, I, 2.1] and let/~® Xdenote tot R'X. Leta : R - - R b e  
the evident natural transformation of triples. The following corollary shows 
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that the R-completion R® X which we use in this paper is the same up to 

homotopy as the R-completion of [2]. 

COROLLARY 6.6. For any space X the natural transformation a induces a 

homotopy equivalence a~ : I~® X ~ R® X. 

PROOF. It is easy to handle directly the case in which Xis the empty space. 
The remaining cases are implied by the analogue of Proposition 6.5 for triples 
on the category of pointed spaces (note that both R and/~ lift to the category of 
pointed spaces). The aitine structure underlying RX gives a left inverse to 
~/R : R(X)-~/~R(X). The basepoint determines a splitting a of a [2, I, 2.2] and 
hence a left inverse to/~(~/R) :/~(X)-*/~R(X), given by the composite/z .Ra. 
Finally, both/PX and R 'X  are evidently grouplike. 

7. The homotopy pullback property 

This section contains the proof of Theorem 1.4. The proof consists of two 
stages. First we show that in the case of a product bundle B × F ~ B there is a 
homotopy equivalence BR®(B X F) ~ B × R®(F). We then apply this fact to 
state and prove a slightly more precise form of Theorem 1.4. 

Observe first that the natural map BR(B X F) ffi B × R(B × F) ~ B  X RFis 
compatible with the triple structures of BR and R and consequently defines a 
map g : BR'(B × F ) ~  B X R'(F) and a map g® : BR®(B X F ) ~  B X R®(F) 

over B. 

PROPOSmON 7.1. For any spaces B and F the map 0® : BR~(B X F) 
B × R®(F) is a homotopy equivalence. 

PROOF. A proof may be constructed along the lines of the argument used 
by Bousfield-Kan [2, pages 34-39] to prove that the natural map ~®(X × Y) 
/~® X × R® Y is a homotopy equivalence. This proof, which is based on the 
categorical aeyclie models theorem of Barr and Beck, uses as acyclic models 
the functor T(B, F) -- B X RF defined on the category of pairs of spaces. This 
was our original proof. We are grateful to J.-P. Meyer for pointing out that a 
subsequent proof of ours is invalid and for providing an alternative proof 

which may be found in [6]. 

The map BR(E)=  B × R ( E ) ~ R ( E )  is compatible with the triple struc- 
tures and thus defines a map q/: BR'(E) ~ R'(E) and a map ¥® : BR®(E) 
R®(E). Proposition 7.1 implies that the natural map B---BR®(B) is a homo- 
topy equivalence and it is clear that the composite of this map with 
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~ : B R o ~ ( B ) - - R ~ ( B )  is the standard map from B to its R-completion. In 
order to prove Theorem 1.4, then, it is sufficient to prove the following result. 

PROPOSITION 7.2. Let B be a fibrant space and q : E --- B a fibration. Then 

the square 

B R , ( E )  ~" , R , E  

aR®(q) R®q 

BR. (B)  ~'® , R . (B)  

is a homotopy fibre square. 

The Rector complex E ~ (B × - )°(E) of a fibration E --- B was described in 
Section 4. This is essentially a resolution of  E ~ B by product  fibrations. 

LEMMA 7.3. I f  E ~ B  is a fibration, then the natural maps BR=(E)--, 

tot(BR~(B × - )'(E)) and R~E ~ tot(R~(B X - )°(E)) are homotopy equi- 

valences. 

PROOF. The two maps are handled in a similar way; we will treat only the 
first one. Consider the bicosimplicial space A'" which in bidegree (m, n) 
contains the space BR m + t(B × - )" + l(E). By one of the examples in Section 6, 

the Rector complex E -* (B × - )'(E) admits a left contraction; by functoria- 
lity this contraction is inherited by each of  the derivative complexes 
B R m ( E ) ~ B R = ( B  × - ) ' ( E ) .  It follows from Lemma 6.2, that the augmen- 
tation BR'(E)~to t~A'"  is a weak equivalence of cosimplicial spaces, and 
therefore, since the cosimplicial spaces involved are fibrant, that the induced 
map BRo~(E)~totA'" is a homotopy equivalence. However, the target of  
this homotopy equivalence can also be interpreted as tot to th(A")= 
tot  B R . ( B  X - -  ) ' ( E ) .  

L~MMA 7.4. The conclusion o f  Proposition 7.2 holds i rE  ~ B is a product 

fibration . 

PROOF. By Proposition 7.1 and the product  lemma of[2, I, 7.2], the square 

of  Proposition 7.2 is homotopy equivalent in the case of  a product  fibration 

B X F - *  B to the square 
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B × R®F , R~B × RooF 

1 1 
B , R~B 

This is evidently a homotopy fibre square. 

By Lemma 7.4, it is possible to apply Proposition 4.6 to the PROOF OF 7.2. 

square 
B R ~ ( B  X - ) ' ( E )  , R = ( B  X - ) ' ( E )  

1 l 
c°BR~(B) , c'R®(B) 

By Lemma 7.3, this gives the desired result. 
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